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Abstract—In an edge-cloud system, end devices can offload
computation intensive tasks to servers for processing, to satisfy
deadline requirements of time-critical tasks, or maintain a good
quality of service. Because the system has limited bandwidth and
computation resource, it can be very challenging to determine
where tasks should be offloaded and processed (task mapping),
and how much bandwidth and computation resource should be
allocated to each task (resource allocation). In this paper, we
propose a task mapping and multi-resource allocation problem
with both communication and computation contentions in an
edge-cloud system, which aims to maximize the total profit gained
by the system while meeting the deadlines of mapped tasks.
Besides, the backhaul network of the proposed edge-cloud system
is modeled as a directed incomplete graph with bandwidth con-
tention on every edge of the graph. We formulate the problem into
a nonconvex Mixed-Integer Nonlinear Programming (MINLP)
problem and provide a linearization method to reformulate the
MINLP problem into an Integer Linear Programming (ILP)
problem formulation, which can be solved with ILP solvers.

Index Terms—deadline requirement, multi-resource allocation,
communication and computation contentions

I. INTRODUCTION

With the rapid development of the Internet of Things and
Artificial Intelligence technologies, end devices are required
to process time-critical computation intensive tasks. However,
limited by the computation resource and power supply, end
devices become less capable of meeting the deadlines of such
tasks to guarantee safety or quality of service. The edge-
cloud system is proposed to assist end devices to handle
computation intensive tasks. In an edge-cloud system, com-
putation intensive tasks can be offloaded from end devices
to edge servers through a wireless network. Upon receiving
tasks from end devices, edge servers can either process these
tasks by themselves, or forward these tasks to other servers
for processing through the backhaul network.

In this paper, we focus on the deadline-constrained task
mapping and resource allocation problem in an edge-cloud
system, with both communication and computation con-
tentions. Task mapping determines where each task is of-
floaded and processed, and the path in the backhaul network
to transmit the task from its offloading server to its processing
server. Resource allocation determines how much bandwidth
and computation resource will be allocated to each task by
servers and the backhaul network. Each task can contribute a
pre-defined profit to the system when its deadline requirement
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is met, and this problem aims to maximize the system total
profit. Due to the limited bandwidth of wireless/backhaul
networks and the limited computation resource of servers,
it can be very difficult to determine both task mapping and
resource allocation, while meeting task deadlines.

Studies on this problem have generally considered a sim-
plified backhaul network modeling without bandwidth con-
tention [1]–[4]. Li et al. [2] and Vu et al. [3] assumed that
the backhaul network was a complete graph. Yang et al. [1]
assumed that the bandwidth allocation was constant for all
tasks in the backhaul network. Gao et al. [4] assumed that
the data transmission delay between a given server pair was
constant in the backhaul network, regardless of the transmitted
data size. These simplified modelings of the backhaul network
make the task mapping and resource allocation problem easier
to solve, but such settings can also limit the application of the
edge-cloud system in real-world systems.

In this paper, we propose an edge-cloud system with a
more general and practical backhaul network setting, where the
backhaul network is modeled as a directed incomplete graph.
In our system, each server is connected to a few nearby servers,
and a unidirectional data transmission mode is used. Thus,
between any connected server A and server B, there exists one
channel for transmitting data from A to B, and another channel
for transmitting data from B to A. These two opposite channels
are modeled as two directed edges in the backhaul network
graph. Each edge of the graph has a bandwidth capacity and
can allocate varying bandwidth to tasks. Because a task is not
necessarily processed on its offloading server, and the backhaul
network graph is not a complete graph, multiple paths will
exist from its offloading server to its processing server, and
one or more directed edges might exist in each path.

We first formulate the profit maximization problem into a
nonconvex Mixed-Integer Nonlinear Programming (MINLP)
problem. By assuming that minimum resource units exist,
and any resource allocation is an integer multiple of the
corresponding minimum resource unit, we reformulate the
MINLP problem into an Integer Linear Programming (ILP)
problem, which can be solved with existing ILP solvers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Edge-Cloud System Model

The multi-layer edge-cloud system comprises end devices,
edge and cloud servers, as shown in Fig 1. End Devices are
units that have specific functionalities and can communicate
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Fig. 1. Edge-Cloud System

with nearby edge servers through the wireless network. Denote
the set of tasks generated by end devices as I, and each task
i ∈ I is associated with four parameters: {si, qi,∆i, gi}. si is
the required data size for task i offloading, qi is the number
of CPU cycles needed to process task i, ∆i is the deadline
of task i, and gi is the profit gained by completing task i
before its deadline. If task i misses its deadline, the system
will not gain any profit from this task. For example, for a
moving autonomous vehicle, the object detection task should
be completed within a predefined time window such that the
vehicle has enough time to take actions. The profit can be
considered as the priority for time-critical tasks. We assume
that tasks cannot be split, i.e., each task must be entirely
offloaded to one edge server and processed on one edge/cloud
server. We further assume that tasks can only be processed on
servers, thus all tasks must be offloaded to be processed.

Edge Servers are deployed near the end devices to provide
instant responses to the requests of end devices. Edge servers
can collect tasks from the end devices within their coverage
area through a wireless network, and either process these tasks
by themselves, or forward these tasks to other servers for
processing through the backhaul network. We denote the set
of edge servers as J . Each task is covered only by a few
nearby edge servers, and we denote the subset of edge servers
to which task i can be offloaded as Ji. In a wireless network,
there exist an uplink for transmitting data from end devices to
the edge server and a downlink for transmitting data from the
edge server to end devices. We denote the uplink bandwidth
capacity of the edge server j ∈ J as bj .

Cloud Servers are servers deployed far away from end
devices, which can cause a significant data transmission delay
when tasks are processed on cloud servers. However, cloud
servers usually have a significantly larger computation re-
source capacity, which can enhance the capability of an edge-
cloud system in handling computation intensive tasks. Cloud
servers can only communicate with other servers through the
backhaul network. We denote the set of servers, including the
edge and cloud servers, as K. Note that J ⊂ K. We denote
the computation resource capacity of a server k ∈ K as ck.

Each server is directly connected with few nearby servers,
and we denote the communication network among all servers

TABLE I
NOTATION (PARAMETERS AND VARIABLES)

Notation Definition
I Taskset, where i ∈ I denotes a task
J Edge server set, where j ∈ J denotes an edge server
Ji Edge server subset to which task i can be offloaded
K Server set, k ∈ K denotes an edge or cloud server, J ⊂ K
G G = (K, E), the directed backhaul network graph
E Edge set of graph G, where e ∈ E denotes an edge
P Set of paths from servers to servers with no more than M

edges, where M is a constant
Pk1k2

Set of paths from server k1 to server k2, where p ∈ Pk1k2

denotes one feasible path
Pe Set of paths in P that contain edge e ∈ E
si Required data size for task i offloading
qi CPU cycles required to process task i
∆i Deadline of task i
gi Profit gained by completing task i within its deadline
bj Uplink bandwidth capacity of edge server j ∈ J
be Bandwidth capacity of edge e ∈ E
ck Computation resource capacity of server k ∈ K
bij Variable for wireless uplink bandwidth allocated to task i

by edge server j
bie Variable for bandwidth allocated to task i by edge e in the

backhaul network
cik Variable for computation resource allocated to task i by

server k
xij Binary offloading decision variable, xij = 1 if task i is

offloaded to edge server j
yik Binary processing decision variable, yik = 1 if task i is

processed on server k
zip Binary path decision variable, zip = 1 if task i is transmit-

ted from server k1 to server k2 through path p ∈ Pk1k2
in

the backhaul network

as the backhaul network. We assume that the data transmission
is unidirectional. Thus, the backhaul network is modeled as a
directed incomplete graph G = (K, E). The node set of G
consists of all servers. For directly connected server k1 and
server k2, both edge (k1, k2) and edge (k2, k1) are included
in edge set E . Each edge e ∈ E has a bandwidth capacity,
denoted as be. The number of possible acyclic paths from one
server to another server can be exponential in the number of
server nodes in graph G. Thus, we consider only the paths that
contain no more than M edges, where M is a constant. We
denote the set of such paths as P , which can be predetermined
with a breadth-first search algorithm. When M = 1, it means
a task can only be processed on its offloading server or the
adjacent servers of its offloading server. We denote the set of
paths from server k1 to server k2 as Pk1k2

, where Pk1k2
∈ P .

Besides, we set Pkk = {∅},∀k ∈ K, which means that no
edges inside the path from server k to itself. We also denote
the set of paths in P which contain edge e ∈ E as Pe.

B. Problem Formulation

For task mapping, we use a binary variable xij to denote
the offloading decision of task i, where xij = 1 only when
task i is offloaded to edge server j ∈ Ji. Similarly, we use a
binary variable yik to denote the processing decision of task
i, where yik = 1 only when task i is processed on server
k ∈ K. Besides, we use a binary variable zip to denote the
path decision of task i, and zip = 1 only when task i is



transmitted from its offloading server k1 to its processing
server k2 through path p ∈ Pk1k2 in the backhaul network.
For resource allocation, we use the variable bij to denote the
amount of bandwidth that will be allocated to task i by edge
server j ∈ J , and use the variable cik to denote the amount
of computation resource that will be allocated to task i by
server k ∈ K. Besides, we use the variable bie to denote the
bandwidth resource that will be allocated to task i by edge
e ∈ E . The notations used in this paper is summarized in
Table I.

The total time to complete task i, denoted as Ti, consists
of four parts: task offloading time T o

i , data transmission time
in the backhaul network T c

i , task processing time T p
i , and

result return time T r
i . The result return time T r

i includes the
time spent in both the backhaul network and the wireless
network downlink. The data size of the returning result is
usually negligible, thus, the time spent in the backhaul network
and the wireless network downlink can be ignored. We assume
T r
i = 0,∀i ∈ I, in this paper. If task i is offloaded to edge

server j, processed on server k, and path p ∈ Pjk is chosen for
data transmission in the backhaul network, then T o

i = si/bij ,
T c
i =

∑
e∈p si/bie, and T p

i = qi/cij . Note that when j = k,
p = ∅ and T c

i =
∑

e∈∅ si/bie = 0. The total task completion
time is

Ti = T o
i + T c

i + T p
i + T r

i =
si
bij

+
∑
e∈p

si
bie

+
qi
cij

.

The deadline-constrained task mapping {xij , yik, zip} and
resource allocation {bij , cik, {bie : e ∈ E}} problem (P0),
which aims to maximize the total system profit, can be
formulated as follows.

(P0) max
∑
i∈I

∑
j∈Ji

∑
k∈K

∑
p∈Pjk

xijyikzipgi (1)

subject to:∑
j∈Ji

xij
si
bij

+
∑
j∈Ji

∑
k∈K

∑
p∈Pjk

∑
e∈p

xijyikzip
si
bie

+
∑
k∈K

yik
qi
cik

≤ ∆i, ∀i ∈ I
(1a)

∑
j∈Ji

xij ≤ 1, ∀i ∈ I (1b)∑
j∈J\Ji

xij = 0, ∀i ∈ I (1c)

∑
k∈K

yik ≤ 1, ∀i ∈ I (1d)∑
j∈Ji

∑
k∈K

∑
p∈Pjk

zip ≤ 1, ∀i ∈ I (1e)

∑
j∈Ji

∑
k∈K

∑
p∈P\Pjk

xijyikzip = 0, ∀i ∈ I (1f)

∑
i∈I

xijbij ≤ bj , ∀j ∈ J (1g)∑
i∈I

yikcik ≤ ck, ∀k ∈ K (1h)

∑
i∈I

∑
p∈Pe

zipbie ≤ be, ∀e ∈ E (1i)

xij , yik, zip ∈ {0, 1},∀i ∈ I,∀j ∈ J ,∀k ∈ K,∀p ∈ P (1j)

The objective function of problem P0 indicates that the system
can gain the task profit only when the task is offloaded, trans-
mitted through a valid backhaul network path and processed.
Constraint (1a) is the deadline constraint, which guarantees
that the total completion time of any task cannot exceed its
deadline. Note that when a task is offloaded to edge server j
and processed on the same server, the path p = ∅, and the time
spent in the backhaul network is also 0. Constraints (1b) ∼
(1f) ensure that each task can be offloaded to at most one edge
server, transmitted through at most one path in the backhaul
network, and processed on at most one server. Constraints (1g)
and (1i) are the bandwidth constraints of the edge servers
and the backhaul network edges, and constraint (1h) is the
computation resource constraint of all servers.

Because the second derivatives of the terms xij
1
bij

and
yik

1
cik

are negative, constraint (1a) is a nonconvex con-
straint. Besides, because terms xijyikzip, xijbij , yikcik, zipbie
are nonlinear, and variables xij , yik, zip are binary variables,
problem P0 is a nonconvex MINLP problem.

III. METHODOLOGY

In problem P0, we must determine both the decision binary
variable (xij , yik, zip) and the continuous resource allocation
variable (bij , cik, {bie : e ∈ E}), while satisfying the task
end-to-end deadlines. In the proposed edge-cloud system, the
bandwidth contention exists in edge servers and the backhaul
network edges, and the computation resource contention exists
in all servers, which make problem P0 very difficult to solve.

Nonconvex MINLP problems are more complex than con-
vex MINLP problems, and convex MINLP problems are more
complex than ILP problems [5]. To solve problem P0, we can
first reformulate (or convert) problem P0 into an ILP problem.
We can use the linearization method introduced by Gao et
al. [4], where they assumed that the minimum resource units
existed, and any resource allocation was the integer multiple
of the corresponding minimum resource unit.

We use b̃ and c̃ to denote the minimum bandwidth and
computation resource units, and assume that any resource
allocation is an integer multiple of the corresponding minimum
resource unit. Let uj = ⌊bj/b̃⌋, ue = ⌊be/b̃⌋, and vk = ⌊ck/c̃⌋.
We also let bij = uij b̃, bie = uieb̃ and cik = vik c̃, where
uij , uie and vik are integer variables. uij ∈ {0, 1, ..., uj}, and
for every non-zero possible value of uij , we associate it with
a new binary variable xijm, where

∑uj

m=1 xijm = xij and
xijm = 1 only if uij = m. Thus,

xij
1

bij
=

uj∑
m=1

xijm
1

m
, xijbij =

uj∑
m=1

xijmm.

Constraint (1g) can be replaced with following linear con-
straint. ∑

i∈I

uj∑
m=1

xijmm ≤ bj ,∀j ∈ J (2)



Similarly, for every non-zero possible value of vik ∈
{0, 1, ..., vk}, we associate it with a new binary variable yikn,
where

∑vk
n=1 yikn = yik and yikn = 1 only if vik = n. Thus,

yik
1

cik
=

vk∑
n=1

yikn
1

n
, yikcik =

vk∑
n=1

yiknn.

Constraint (1h) can be replaced with following linear con-
straint. ∑

i∈I

vk∑
n=1

yiknn ≤ ck,∀k ∈ K (3)

For every non-zero possible value of uie ∈ {0, 1, ..., ue},
we associate it with a new binary variable wier, where∑ue

r=1 wier =
∑

p∈Pe
zip and wier = 1 only if path p is

chosen by task i (zip = 1) and uie = r for e ∈ p. Note that∑ue

r=1 wier =
∑u′

e
r=1 wie′r if e, e′ ∈ p. Thus,

1

uie
=

ue∑
r=1

wier
1

r
, zipuie =

ue∑
r=1

wierr.

Constraint (1i) can be replaced with following linear con-
straint. ∑

i∈I

∑
p∈Pe

ue∑
r=1

wierr ≤ ue,∀e ∈ E (4)

For constraint (1f), xijyikzip should be rewritten as
xijyikzipwier after we use

∑ue

r=1 wier
1
r to replace 1

uie
. We

can use a new binary variable hijkper to replace xijyikzipwier,
where hijkper = 1 only when task i is offloaded to edge server
j, transmitted through path p in the backhaul network, uie = r
for edge e ∈ p, and processed on server k. For simplicity of
notation, let ∀(i, j, k, p, e, r) represents ∀i ∈ I,∀j ∈ J ,∀k ∈
K,∀p ∈ P, e ∈ p, r ∈ {0, 1, ..., ue}. hijkper can be defined
with the following linear constraints.

hijkper ≥ xij + yik + zip + wier − 3,∀(i, j, k, p, e, r) (5)

hijkper ≤ xij ,∀(i, j, k, p, e, r) (6)

hijkper ≤ yik,∀(i, j, k, p, e, r) (7)

hijkper ≤ zip,∀(i, j, k, p, e, r) (8)

hijkper ≤ wier,∀(i, j, k, p, e, r) (9)

hijkper ∈ {0, 1},∀(i, j, k, p, e, r) (10)

Constraint (5) ensures that hijkper = 1 only when xij = yik =
zip = wier = 1. Thus, constraint (1a) can be rewritten as
follows.∑
j∈Ji

si

b̃
(

uj∑
m=1

xijm
1

m
) +

∑
j∈Ji

∑
k∈K

∑
p∈Pjk

∑
e∈p

si

b̃
(

ue∑
r=1

hijkper
1

r
)

+
∑
k∈K

qi
c̃
(

vk∑
n=1

yikn
1

n
) ≤ ∆i, ∀i ∈ I

(11)

With the above linearization method, we can reformulate
problem P0 into an ILP problem. The ILP problem can

then be solved using some existing ILP solvers. Note that
the runtimes of these ILP solvers are not bounded within
polynomial time. When the minimum resource units become
smaller, a result with higher accuracy can be obtained, but
more integer variables exist in the ILP problem, which further
increases the runtime of the ILP solver.

For the approximation algorithms of problem P0, one pos-
sible direction is the rounding method. We can first relax the
ILP problem into a Linear Programming (LP) problem, which
can be solved within polynomial time. Then, we can use some
polynomial-time rounding algorithms to round the fractional
solution of the LP problem into an integral solution. Rounding
methods are commonly used in solving ILP problems, such as
the Knapsack Problems (KP) or the Generalized Assignment
Problems (GAP). Based on partial enumeration, Frieze and
Clarke [6] proposed a polynomial-time rounding algorithm to
solve the multidimensional 0-1 knapsack problem. By con-
structing the bipartite graph, Shmoys and Tardos [7] developed
a polynomial-time rounding algorithm to solve the GAP.

IV. CONCLUSION

In this presented work, we proposed a deadline-constrained
multi-resource allocation problem, with both communication
and computation contentions, in a multi-layer edge-cloud
system, which aimed to maximize the total system profit.
Different from other studies on this problem, we modeled
the backhaul network as an incomplete directed graph, and
bandwidth contention existed in every edge of the backhaul
network. We formulated this problem as a nonconvex MINLP
problem and provided a linearization method to reformulate
the MINLP problem into an ILP problem, which could be
solved with ILP solvers. We also introduced a possible direc-
tion to develop a polynomial-time approximation algorithm for
the proposed problem. In the future, we want to explore possi-
ble polynomial-time approximation algorithms and distributed
solutions for the proposed problem.
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